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Abstract 
 

We recently reported strong, replicable (i.e., replicated) evidence for lexically-mediated 
compensation for coarticulation (LCfC; Luthra et al., 2021), whereby lexical knowledge 
influences a pre-lexical process. Critically, evidence for LCfC provides robust support for 
interactive models of cognition that include top-down feedback and is inconsistent with 
autonomous models that allow only feedforward processing. McQueen, Jesse and Mitterer 
(2023) offer five counter-arguments against our interpretation; we respond to each of those 
arguments here and conclude that top-down feedback provides the most parsimonious 
explanation of extant data. 
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Introduction 
A core debate in cognitive science centers on whether high-level knowledge directly shapes 
perception or merely influences post-perceptual interpretations (e.g., Firestone & Scholl, 2016; 
Lupyan, 2015; Magnuson et al., 2018; Norris, McQueen & Cutler, 2016). Norris, McQueen and 
Cutler (2000) argued that apparent top-down effects in spoken word recognition reflect post-
perceptual integration, consistent with autonomous theoretical accounts that preclude feedback. 
 
Elman and McClelland (1988) devised a critical test case that cannot be explained as post-
perceptual integration. Their paradigm combines phoneme restoration (e.g., listeners identify an 
ambiguous fricative as /s/ given the frame “Christma_” but as /∫/ [“sh”] given "fooli_"; Ganong, 
1980) and a prelexical process known as compensation for coarticulation (CfC). In CfC, the 
perception of a place ambiguity is influenced by the place of articulation of a preceding segment 
(e.g., an ambiguous step from a “tapes”-“capes” continuum is more likely to be heard as /t/ after 
/∫/ and as /k/ following /s/; Mann & Repp, 1981). Elman and McClelland found that a fricative 
restored as /s/ or /∫/ (front place of articulation vs. back) by lexical context (“Christma_” vs. 
“fooli_”) could drive CfC on a subsequent /t/-/k/ ambiguity (indicating that the final phoneme 
was genuinely restored, since it was able to influence the perception of the following /t/-/k/ 
ambiguity). This lexically-mediated compensation for coarticulation (LCfC) would constitute 
strong support for interactive models and could not be explained by autonomous accounts. 
However, LCfC has not been consistently observed, with some positive reports (Elman & 
McClelland, 1988; Magnuson et al., 2003a; Samuel & Pitt, 2003) and some negative reports (Pitt 
& McQueen, 1998; McQueen, Jesse & Norris, 2009). 
 
Luthra et al. (2021; cf. Samuel & Pitt, 2003) noted that few LCfC studies pretested materials to 
confirm that they could independently drive lexical phoneme restoration (Ganong) and CfC 
effects. Materials that cannot drive component effects separately will not be capable of driving 
LCfC. With rigorously pretested materials, we observed robust LCfC in a well-powered, pre-
registered study and an independent replication sample. McQueen, Jesse and Mitterer (2023) 
argue that our findings should not be taken as evidence for top-down processing; here, we 
consider their five arguments. 
 
1. Accounting for null results  
McQueen et al. (2023) write that “Before Luthra et al. (2021) can conclude in favor of top-down 
processing based on their data from the LCfC paradigm… they need to offer a convincing 
explanation for other data from the paradigm that contradict their account” (p. 3). They focus 
particularly on null results from McQueen et al. (2009) and argue that Bayes Factor analyses 
favor the null hypothesis. We disagree with three aspects of their analyses. 
 
First, their Bayes Factor analyses test for LCfC under the assumption that the lexical restoration 
effect size for context items should predict the LCfC effect size. While interactive theories do 
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assume that these effects originate from the same source (lexical knowledge), there are many 
reasons why these effects might not correlate. For instance, Ganong and CfC effects would not 
be expected to correlate if there is a ceiling on the size of either effect or if within-subject 
reliability in the measurement of either effect is poor. Furthermore, there is no guarantee that any 
given experimental paradigm will be sensitive enough to detect subtle gradations of an effect, 
especially if we are near the limit of what the paradigm can detect. Thus, the hypothesis being 
evaluated by the Bayes Factor analyses is not necessarily reflective of the interactive view and 
therefore does not constitute a valid test of feedback.  
 
Second, McQueen et al. (2023) applied their Bayes Factor analyses to three ambiguous steps 
from a phonetic continuum. As they acknowledge, individual Bayes Factor analyses are 
inconclusive for two of three continuum steps and provide only moderate support for the null 
hypothesis in the third case. (By convention, Bayes Factors between ⅓ and 3 are considered to 
be inconclusive, whereas those that are less than or greater than those bounds are considered to 
be evidence in favor of the null or in favor of the alternative, respectively; see Dienes, 2014.) 
The authors also conducted a combined Bayes Factor analysis by multiplying individual Bayes 
Factors together, providing a rationale for this approach in their Supplementary Materials. 
However, multiplying Bayes Factors is problematic when data are drawn from the same 
distribution (Rouder & Morey, 2011); critically, the data from the three continuum steps are 
drawn from the same distribution, since each participant heard all three (i.e., Continuum Step 
was a within-subjects factor). Strikingly, if one appropriately pools the ambiguous steps from the 
McQueen et al. data (rather than treating each as separate, independent samples), the result is 
inconclusive (BF = 0.45; see analysis scripts at https://osf.io/mdn8w/).  
 
Third, we are unsure what McQueen et al. infer is proven by their analyses. To take their BF 
analyses of a single experiment as evidence that the null hypothesis is more likely than LCfC 
requires ignoring all positive results.  
 
Furthermore, insisting we explain all null effects is not an appropriate burden of proof; there are 
myriad reasons why a study could fail to see a significant effect. For example, consider the data 
from McQueen et al. (2009), who observed Ganong and CfC effects in one set of trials but failed 
to observe LCfC on a separate set of trials. Critically, this design required the use of a 4-
alternative forced choice (4AFC) task, wherein listeners were required to categorize both the 
final segment of the context item and the first segment of the target item. It is possible that this 
cognitively demanding 4AFC task obscured potential LCfC effects, especially since previous 
work suggests that some perceptual effects in speech processing may be attenuated when task 
demands are heightened; for example, increasing cognitive load can attenuate cross-modal 
phonetic recalibration effects driven by visual (lipreading) information (Jesse & Kaplan, 2019), 
and shifting attentional resources away from the speech signal can extinguish the influence of 
lexical knowledge on phonetic retuning (Samuel, 2016). In addition to simple 

https://osf.io/mdn8w/
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complexity/demand issues, note that McQueen and colleagues in various papers have argued that 
the Ganong effect results from post-perceptual bias, while accepting that CfC is a perceptual-
level effect. On that logic (with which we do not agree, as the interactive account describes 
Ganong effects as perceptual results of top-down feedback), the 4AFC forces participants to 
integrate a post-perceptual decision with what is normally a perceptual decision, contaminating 
the putatively online decision component with the putatively post-perceptual decision 
component. 
 
For these reasons, we argue that it is preferable to establish Ganong and CfC effects via isolated 
pretesting (Luthra et al., 2021), allowing for the use of a simpler 2AFC task that minimizes task 
demands. Furthermore, a key implication of our recent paper (Luthra et al., 2021) is that poor 
stimulus construction may be to blame when component Ganong and CfC effects are not first 
established with pretesting. We argue that the more appropriate challenge is for proponents of 
the autonomous perspective to explain positive LCfC results – especially from studies that test 
for robust, independent Ganong and CfC effects prior to testing for LCfC. 
 
2. Transitional probabilities could somehow explain results 
McQueen et al. (2023) argue that phoneme-to-phoneme transitional probabilities (TPs) might 
explain (at least some) LCfC effects, citing evidence that TPs can influence CfC (Pitt & 
McQueen, 1998). However, evidence that TPs can influence CfC is not evidence against lexical 
influences on CfC; it simply demonstrates that TP-mediated CfC is also possible.  
 
In the past (McQueen et al., 2009; Pitt & McQueen, 1998; and in reviews of this response), the 
authors have also made this argument based on computational simulations by Norris (1993), who 
showed that a Simple Recurrent Network (SRN; Elman, 1990, 1991) can simulate LCfC. Norris 
trained an SRN to map 11-feature phonetic inputs to separate outputs representing the current 
word and phoneme. The critical items were 12 CVC words. Phonetic inputs were adjusted to 
reflect CfC (shifting the features for adjacent phonemes with different places of articulation 
toward each other). The critical items built in a single TP contingency: the final C was predicted 
by the initial CV. After training, the SRN demonstrated LCfC on the critical items. 
 
However, for this to support autonomous architectures, it is necessary that SRNs are purely 
feedforward models. This is not the case. Norris asserts that there is no form of feedback in an 
SRN because the recurrent connections are from hidden nodes to hidden nodes with a time delay 
of 1 step, and therefore constitute lateral connections, rather than feedback. But feedforward 
networks and recurrent networks are fundamentally different. The input at time t to the hidden 
layer is both the current input pattern but also the states of the hidden nodes at the previous time 
step (typically copied to a context layer); those states are themselves a combination of the 
previous input the hidden states two time steps back with the input from one time step back, and 
so on. This means that the input to the hidden layer (the point where inputs first impinge on the 
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SRN) includes information that results from a transformation carried out internally within the 
model (context x hidden connections, which again are products of mixtures of inputs times input-
to-hidden weights combined with context states [hidden at previous time step] multiplied by 
context-to-hidden [or hidden-to-hidden] weights); this is top-down interaction. The hidden nodes 
do not “know” which aspects of their input are external (from the actual input nodes) and which 
are internal (from hidden nodes); the external inputs are mixed with internal information, 
precluding veridical input encoding. More formally, recurrent networks are cyclic graphs (i.e., 
they contain loops, in contrast to feedforward networks, which are a acyclic because they have 
no loops; Prince, 2024), and computer science treatments of this distinction routinely describe 
recurrent networks as dependent on feedback of their own prior, transformed states (Jurafsky & 
Martin, forthcoming; Prince, 2024). We make this case in more detail in Magnuson and Luthra 
(submitted). 
 
Strikingly, consider how Norris et al. (2016) characterize what they see as flaws entailed by 
adding feedback: “the problem here is that the activation generated by the input is being reused 
multiple times, and amplified each time” (p. 5), potentially leading to hallucinations. Thus, to 
them, the critical problem is feedback mixes bottom-up inputs with top-down information, 
precluding veridical perception. The same is true of SRNs, since inputs are inextricably mixed 
with model states from the previous timestep, which includes combined transformations from the 
previous step's input and context states (recursively over preceding time steps). Redescribing the 
SRN as having time-delayed connections between hidden units (as Norris [1993] does) does not 
resolve this; the math remains the same, and it is a fact that inputs are immediately mixed with 
model internal transformations of the previous time step(s), making SRNs a form of interactive 
model.  
 
McQueen et al. (2023) have not offered a computationally specific proposal for how TPs could 
explain apparent lexical effects; critically, a testable hypothesis would require identifying the 
order of transitional probabilities (e.g., diphones, triphones, or some specific combination of 
multiple orders) that would underlie this effect. Without a concrete proposal based on TPs, it is 
impossible to test whether potential LCfC effects truly reflect a lexical influence or simply TPs; 
any putatively lexical effect could simply reflect an n-phone influence, where n is the TP order 
that is consistent with the specific item under examination (sometimes diphone, sometimes 
triphone, …). Without a computationally specific explanation of how TPs might explain lexical 
influences, there simply is no empirical way to engage with the critique, which appeals to 
diphone probabilities when those are consistent with the explanation (Pitt & McQueen, 1998) but 
to triphone probabilities when those turn out to be consistent with the explanation (e.g., 
McQueen et al., 2023 appeal to triphone TPs as well as “higher-order TP biases”, p. 4). 
Nevertheless, we have attempted to test this proposal as best we can, by assessing whether any of 
multiple possible orders of TP could coherently account for positive LCfC results. We have 
shown in multiple analyses that there is no identifiable order of n-phone or set of n-phones that 
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provide a comprehensive, item-specific explanation for positive results in LCfC (Luthra et al., 
2021; Magnuson et al., 2003b). Instead, the predictive context most often resolves to word length 
minus one — i.e., lexical context. 
 
Additionally, it is worth emphasizing that TPs do not necessarily have a bottom-up basis. In the 
TRACE model (McClelland & Elman, 1986), for example, TP effects emerge via combined 
impacts of top-down lexical feedback and lateral inhibition (another emergent property of 
interactive activation that does not require a separate mechanism to be invoked). Furthermore, as 
justified above, simulations of LCfC with SRNs also depend on mixing  current bottom-up 
inputs and (top-down) previous network transformations. 
 
3. Learning over the course of the experiment 
McQueen et al. (2023) argue that listeners could learn over the course of the experiment that the 
ambiguous ending of the context item is always the lexically consistent one. Here, they appeal to 
McQueen et al. (2009), who showed that the nature of practice trials can influence the emergence 
of putative LCfC effects; for this reason, we did not include practice trials in Luthra et al. (2021). 
Critically, if it were the case that the results observed by Luthra et al. were due to learning over 
the course of the experiment, we would expect the putatively lexical effect to only emerge after a 
countable number of initial  trials. McQueen et al. conducted an analysis with trial as a factor but 
found no evidence that LCfC was influenced by trial. They then argue that the learning may have 
occurred so rapidly as to be undetectable over trials. If learning is proposed to be so fast that it is 
undetectable, it seems there is no scientific avenue to measure (let alone test) their learning 
hypothesis.  
 
In motivating their argument for experiment-induced learning, McQueen et al. (2023) also appeal 
to studies of perceptual learning. For example, it has been documented that lexically guided 
perceptual learning can be obtained with as few as 10 exposures to critical ambiguous stimuli 
(Kraljic & Samuel, 2007) and that such learning scales with dosage of exposure to the critical 
stimuli (Cummings & Theodore, 2023); in these studies, the (sometimes small number of) 
critical stimuli are presented during an initial exposure phase, and learning is assayed during a 
separate test phase with a relatively large number of trials. Note that it would be exceedingly 
difficult (and perhaps impossible) to conduct a study of dosage with the LCfC paradigm, since 
manipulating dosage (i.e., the number of exposures to the ambiguous context items) necessarily 
also changes the number of trials used to estimate the size of the LCfC effect. Because LCfC is 
measured via a categorization function (see Figure 1), an experimenter must obtain several 
measurements at each continuum step for each context.  If experiment-induced learning could in 
principle occur with as few as one exposure to an ambiguous context stimulus, it is therefore not 
clear how one could assay the impact of exposure dosage in the LCfC paradigm, short of 
conducting a study with only one observation per participant (introducing severe concerns about 
statistical power, or requiring massive numbers of participants). 
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The authors also write that “What is required to prevent this kind of learning is exposure to 
unambiguous tokens of both interpretations of the ambiguous sound (e.g., Christma[s/ʃ] with 
Christmas and Christmash, in equal proportions; fooli[s/ʃ] with foolis and foolish)” (p. 5). In our 
study, participants receive equal proportions of both interpretations in that they receive zero 
tokens of each. Additionally, it is incredibly unlikely that a listener would hear “Christmash” in 
equal proportion to “Christmas” in real-world listening conditions, making the proposed 
experiment  problematic in terms of ecological validity, as non-ecological distributions can 
influence effect sizes in phonetic categorization studies (Bushong & Jaeger, 2019). Specifically, 
Bushong and Jaeger argue that unecological distributions (in particular, including clear nonword 
tokens) distort the normal influence of top-down knowledge. 
 

 
Figure 1. McQueen et al. (2023) argue that there was a confound in some context stimuli 
used by Luthra et al. (2021), in that the maximally ambiguous token from the 
isolate/*isolake continuum was slightly biased toward a front place of articulation and the 
maximally ambiguous token from the maniac/*maniat continuum was slightly biased 
toward a back place of articulation. They conducted a cross-splicing experiment and 
found that in the absence of lexical information, these ambiguous blends could drive a 
small but reliable CfC effect in the same direction as the observed LCfC effect. However, 
the size of their CfC effect (panel A) is substantially smaller than the LCfC effect 
observed by Luthra et al. (panel B: original sample; panel C: replication experiment), 
which we take as evidence that the lexical influence substantially drove our observed and 
replicated results. Note also that the other two contexts (pocketful/*pocketfur and 
questionnaire/*questionnaile) were biased against the lexically consistent ending. 
Ribbons indicate within-subject 95% confidence intervals, estimated using the 
summarySEwithin function in the “Rmisc” package (Hope, 2022) in R (R Core Team, 
2022).  

 
4. Acoustic differences between stimuli 
McQueen et al. (2023) argue that it is necessary to have identical acoustics for context-final 
segments (e.g., identical ending segments for mania[t/k] and isola[t/k]). While there are certainly 
advantages for comparing acoustically identical ambiguous stimuli, the advantage of our 
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approach is that each context’s ambiguous stimulus is the maximally ambiguous morph between 
naturally produced tokens. McQueen et al. note our t/k context stimuli have a slight acoustic bias 
toward the lexical endpoint. They provide some empirical evidence that even when lexical 
information is removed, these context-final ambiguous stimuli can drive small but significant 
CfC effects in the direction of our LCfC effects. However, their CfC effect (a 3.8% difference 
between conditions, averaging across continuum steps) is substantially smaller than our LCfC 
effects (a 7.1% difference between conditions in our original sample and a 6.2% difference in 
our replication sample, though this difference is especially large at intermediate continuum steps; 
see Figure 1). We therefore argue that the majority of the effect observed by Luthra et al. (2021) 
is attributable to top-down lexical feedback.  
 
McQueen et al. (2023) also describe an acoustic difference in the l/r context stimuli used by 
Luthra et al. (2021) — specifically, that there is devoicing in one context (pocketful-*pocketfur) 
but not the other (questionnaire-*questionnaile) — and write that they are unable to conduct a 
cross-splicing experiment because of the strong coarticulation from the vowel to the word-final 
segment. They suggest that this acoustic difference could contribute to a spurious basis for our 
effects. However, one can characterize the acoustic bias in the context stimuli by trimming them 
to form contexts that are ambiguous between two nonwords (e.g., trimming the ambiguous 
pocketful/*pocketfur stimulus to be *ul/*ur) and examining which endpoints they are biased 
toward. In this way, Luthra et al. (2021) determined that the l/r contexts they used actually have 
slight acoustic biases away from the lexical endpoints (see Supplementary Materials). The tested 
bias (Figure 1) and the untested bias are in opposite directions, and thus may cancel each other 
out. We take this as additional evidence that acoustic differences between the context stimuli 
cannot account for the effects observed by Luthra et al. 
 
5. Unspecified interactions 
McQueen et al. (2023) argue that our effects could be “the result of acoustic effects, TP or 
experiment-induced biases, or their combination, and, when combined, those effects could have 
amplified each other” (p. 10). However, without a fully specified (e.g., computationally 
implemented) mechanistic explanation of how transitional probabilities and experiment-induced 
biases could explain the current data, and evidence or explanation for how they might interact, it 
is not possible to quantify (and thus test or falsify) the authors’ suggestion that these factors 
could conspire, in some unspecified way, to drive our robust and replicated results.  
 
Concluding remarks 
The question of whether there are top-down effects in speech perception has substantial 
implications for the cognitive and neural sciences; it is no surprise that this question has inspired 
fervent debate. McQueen et al. (2023) raise interesting questions and identify (minor) flaws in a 
subset of our materials but fail to provide a comprehensive refutation of the growing body of 
positive LCfC results. Their Bayes Factor analyses only favor the null hypothesis in a minority 
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of published results (one experiment), and even then depend on parameter choices that favor that 
conclusion. After 20 years, they have yet to provide an account of how transitional probabilities 
could explain apparent lexical effects in the specific items that have yielded positive LCfC 
results. We would argue that their appeal to within-experiment learning is unfalsifiable, 
specifically their claim that learning might take place so early in the experiment as to be 
undetectable with trial-level analyses (McQueen et al., 2023, p. 5). Among the acoustic 
differences they identify in our stimuli, they only tested one that affects a subset of context items, 
but their experimental test of whether the slight bias in those items could drive our LCfC effect 
yields an effect considerably smaller than our replicated LCfC result. The kitchen-sink appeal to 
these four issues conspiring in an unknown way to produce systematically positive LCfC results 
is unconvincing. Interaction, on the other hand, provides a coherent and parsimonious account. 
 
Although we disagree with the conclusions of McQueen et al., we are grateful for their careful 
scrutiny of our work and applaud them for making their analysis materials openly available; 
these open science practices will be key for resolving the debate over how listeners integrate 
high-level knowledge with sensory input.   
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Supplementary Materials 
 

McQueen, Jesse and Mitterer (2023) assert that Luthra et al. (2021) used problematic stimuli in 
testing for lexically mediated compensation for coarticulation (LCfC). They highlight the 
acoustic differences in our context stimuli, including a difference in devoicing between the 
pocketfu? and questionnai? contexts. Notably, data from Luthra et al. provide evidence that this 
acoustic difference leads to biases against lexical context, not toward. 

 
In one of their pilot experiments, Luthra et al. (2021) presented one group of listeners with word-
nonword continua (e.g., pocketful-*pocketfur) and a separate group of listeners with nonword-
nonword continua generated by trimming the word-nonword continua (e.g., *ul-*ur). For a 
context item to be included in subsequent experiments, there had to exist at least one step where 
participants who heard the word-nonword continuum made more lexically consistent responses 
compared to participants who heard the associated nonword-nonword continuum; that is, there 
had to be one step where a lexical (Ganong, 1980) effect was observed. This step was identified 
as the maximally ambiguous step, and that continuum step was used for the main LCfC 
experiments. 
 
Critically, we can also assess the bias of the context stimuli by looking at responses to the 
nonword-nonword continua at the most ambiguous step (Figure S1, circled points). In this way, 
we can see that the pocketful-*pocketfur continuum is biased toward the lexically inconsistent /r/ 
endpoint (as participants only labeled this token as /l/ 38% of the time) and the questionnaire-
*questionnaile continuum is biased toward the lexically inconsistent /l/ endpoint (as participants 
labeled this token as /l/ 66% of the time). While this pilot experiment did not assess the effect of 
these context stimuli on labeling of the the subsequent target continua, it does provide evidence 
that these context stimuli had acoustic biases that were inconsistent with lexical knowledge, 
making it unlikely that the LCfC effect observed in the main experiments was driven by the 
acoustic differences between these stimuli. 
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Figure S1. Results from the context item pilot experiment from Luthra et al. (2021). Circles indicate the 

front-rate for a nonword-nonword context at the "maximally ambiguous" step of each continuum. 
Pocketful is r-biased and questionnaire is l-biased (so the steps selected build in a bias against lexical 
context). Isolate and maniac are both k-biased, though isolate is less k-biased than maniac, making the 

baseline bias of these items consistent with lexical context.  


