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A B S T R A C T

Whether top-down feedback modulates perception has deep implications for cognitive theories. Debate has
been vigorous in the domain of spoken word recognition, where competing computational models and
agreement on at least one diagnostic experimental paradigm suggest that the debate may eventually be
resolvable. Norris and Cutler (2021) revisit arguments against lexical feedback in spoken word recognition
models. They also incorrectly claim that recent computational demonstrations that feedback promotes accuracy
and speed under noise (Magnuson et al., 2018) were due to the use of the Luce choice rule rather than adding
noise to inputs (noise was in fact added directly to inputs). They also claim that feedback cannot improve word
recognition because feedback cannot distinguish signal from noise. We have two goals in this paper. First,
we correct the record about the simulations of Magnuson et al. (2018). Second, we explain how interactive
activation models selectively sharpen signals via joint effects of feedback and lateral inhibition that boost
lexically-coherent sublexical patterns over noise. We also review a growing body of behavioral and neural
results consistent with feedback and inconsistent with autonomous (non-feedback) architectures, and conclude
that parsimony supports feedback. We close by discussing the potential for synergy between autonomous and
interactive approaches.
1. Introduction

The decades-old feedback debate in spoken word recognition (SWR)
has significant implications for perception and cognition. It echoes
similar debates in vision (Firestone & Scholl, 2016) and cognition
more generally (Clark, 2013). At stake are longstanding questions
about modularity (Fodor, 1983) and cognitive penetrability of percep-
tion (Pylyshyn, 1999), with implications for understanding the cog-
nitive and neurobiological bases of perception. The domain of SWR
stands out because the debate has revolved around predictions from
implemented computational models — primarily the interactive ac-
tivation model, TRACE (McClelland & Elman, 1986) vs. autonomous
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models without feedback (primarily Norris & McQueen, 2008; Norris,
McQueen, & Cutler, 2000) – and a crucial experimental paradigm that
both sides agree could provide definitive evidence supporting the need
for feedback (lexically-mediated compensation for coarticulation; Elman
& McClelland, 1988). This suggests that the debate in SWR has high
potential to be resolved, which would inform theories of perception
and cognition more generally.

This article was motivated by an erroroneous claim in Norris and
Cutler (2021), who revisit the feedback debate in SWR and devote
substantial text to a critique of Magnuson, Mirman, Luthra, Strauss, and
Harris (2018). Magnuson et al. made a comprehensive case for how
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feedback can improve SWR that included simulations (with TRACE;
McClelland & Elman, 1986) demonstrating that feedback promotes
faster and more accurate SWR as noise is added to inputs. Norris
and Cutler (2021) claim that Magnuson et al. (2018)’s results were
an artifact of a flawed ‘‘workaround’’ in TRACE: emulating noise at a
decision stage rather than adding noise directly to inputs. Norris and
Cutler were mistaken: Magnuson et al. (2018) clearly describe adding
noise to model inputs.

However, we do more in this article than simply correct the record
on this point. We will review the case against feedback raised by Norris,
McQueen, and Cutler (2018), and we shall see that empirical and
computational results contradict this case, and that feedback is more
parsimonious with extant behavioral and neural data. We will also
explain how joint effects of feedback and lateral inhibition allow inter-
active activation models to selectively enhance signals over noise — the
key to understanding how feedback improves word recognition under
noise. We conclude with suggestions for moving beyond the feedback
debate, and using the tension between autonomous and interactive
theories to drive synergistic advances in understanding SWR.

2. The case against feedback in spoken word recognition

The case against feedback in SWR consists of four primary points.

1. Models without feedback should be preferred because feedfor-
ward systems are simpler (Norris et al., 2000, pp. 299, 323).

2. Feedback would hinder processing: Mixing top-down and bottom-
up information makes veridical perception impossible and im-
plies hallucination (Norris et al., 2000, p. 302).

3. Feedback is not necessary : Lexical influences on sublexical tasks
can be simulated by adding a post-perceptual phoneme decision
pathway to a feedforward system (Norris et al., 2000).

4. Even in interactive activation models, feedback serves no useful
purpose other than fitting data (lexical influences on phoneme
tasks; Norris & Cutler, 2021; Norris et al., 2000).

We disagree with each point. We are motivated to respond to Norris
nd Cutler (2021) because their argument depends crucially upon a
istaken assertion about (Magnuson et al., 2018)’s simulations and
isunderstandings about the Luce Choice Rule and dynamics of inter-

ctive activation models. We first explain why the four points above
re invalid, and provide a detailed explanation of how feedback in
nteractive activation models – in concert with lateral inhibition – pro-
otes accuracy and speed. We conclude with discussions of parsimony,

nd the relative utility and potential complementarity of ideal ob-
erver (e.g., Shortlist B; Norris & McQueen, 2008) and neurally-inspired
lgorithmic models (e.g., TRACE; McClelland & Elman, 1986).

. Is the case against feedback supported?

re systems without feedback simpler? This assertion could only be
rue if a feedforward system could account for everything a feedback
ystem can without additional mechanisms, or by adding a simpler mecha-
ism. However, a purely feedforward system cannot account for lexical
ffects on sublexical decisions (e.g., Ganong, 1980; Rubin, Turvey, &
an Gelder, 1976; Samuel, 1981, 1996, 2001). Norris et al. (2000)
dded a special-purpose postperceptual decision mechanism to their
erge model to account for such effects without feedback. This is at

east as complex as adding feedback (Fig. 1): It requires duplicating
he sublexical layer and adding two sets of weights; feedback adds one
ayer of weights and no nodes.

ould feedback hinder perception? (Norris & Cutler, 2021) assert
hat feedback necessarily hinders perception. However, interactive ac-
ivation models are readily parameterized to provide strong bottom-up
riority — as Magnuson et al. (2018) discuss (p. 12; see also Mag-
uson, Mirman, & Harris, 2012; Magnuson, Mirman, & Myers, 2013;
2

c

cClelland & Elman, 1986) – while also accurately simulating human
ecision delays and misperceptions (McClelland, Mirman, Bolger, &
haitan, 2014; Mirman, McClelland, & Holt, 2005). The original TRACE
arameters achieve a balance sufficient to simulate dozens of aspects of
uman speech perception and SWR while enforcing strong bottom-up
riority (Magnuson & Crinnion, 2022). Note that this is a remarkable
spect of the model; it is unusual for a complex model to generalize to
any phenomena with fixed parameters.

s feedback necessary in theories of spoken word recognition?
hile a postperceptual sublexical decision mechanism (Fig. 1, right

anel) can simulate lexical influences on some sublexical tasks, there
re crucial exceptions. Samuel (1997) makes a compelling case that
exically-driven selective adaptation from phonemes replaced with
oise supports interaction, but (Norris et al., 2000) argue the results
ould actually manifest at a lexical rather than sublexical level. While
e disagree, it is the case that both sides agree that lexically-mediated
ompensation for coarticulation (LCfC) (Elman & McClelland, 1988)
rovides a diagnostic test for distinguishing feedforward and feedback
ccounts (Norris, McQueen, & Cutler, 2016; Pitt & McQueen, 1998).

In LCfC, the question is whether a lexically-restored phoneme can
rive a sublexical coarticulatory effect (compensation for coarticu-
ation; Mann & Repp, 1981), which would be consistent only with
eedback (on the logic that CfC involves a prelexical, phonetic-level
nteraction, and so lexical influence on CfC would constitute what
cClelland et al., 2014, call a ‘knock-on consequence’ of interaction).

revious positive results (e.g., Elman & McClelland, 1988; Magnuson,
cMurray, Tanenhaus, & Aslin, 2003; Samuel & Pitt, 2003) have been

alled into question due to replication failures (McQueen, Jesse, &
orris, 2009), and evidence that transitional probabilities in nonwords
an also drive phoneme restoration that can drive CfC in the absence of
exical context (Pitt & McQueen, 1998). Recently, though, Luthra et al.
2021) observed that few studies verified that items could separately
rive phoneme restoration and CfC before being combined in LCfC; if
tems cannot drive the component effects separately, they will not drive
CfC when combined. Luthra et al. (2021) reported robust, replicable
CfC effects when they only used materials capable of generating
honeme restoration and compensation for coarticulation separately
efore being combined in LCfC (including materials where transitional
robability and lexical context had opposite biases).1

There is remarkably strong neurophysiological evidence from mon-
eys that feedback connections from higher levels in the visual system
serve to amplify and focus’ responses in lower levels (Hupé et al.,
998). There are numerous neural studies that suggest feedback sup-
orts online human language processing. Setting aside cases that Norris
t al. (2016) argue are not sufficiently specific (though we do not
gree with this assessment; e.g., Gow & Olson, 2015; Gow, Segawa,
hlfors, & Lin, 2008; Myers & Blumstein, 2008), recent ERP evidence

or early impact of lexical context suggests feedback is necessary (Getz
Toscano, 2019; Noe & Fischer-Baum, 2020).
In light of this new evidence, we conclude that (a) feedback is

ecessary and (b) autonomous alternatives to feedback (Norris &
cQueen, 2008; Norris et al., 2000) are insufficient: they cannot

ccount for lexically-mediated compensation for coarticulation or early
exical modulation of low-level neural responses because they prohibit
exical-level information from interacting with sublexical computa-
ions.

oes feedback have a useful purpose? The assertion that feedback
erves no useful purpose follows from a misunderstanding about interac-
ive activation and depends on two erroneous claims and one outdated
laim.

1 McQueen, Jesse, and Mitterer (2023) argue that some unspecified combi-
ation of stimulus flaws, transitional probabilities, and unknown factors could
rive these new LCfC data. As Luthra, Crinnion, Saltzman, and Magnuson
2023) reply, though, this case is ad hoc, whereas interaction provides a
oherent and parsimonious explanation.
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Fig. 1. Comparing the complexity of purely feedforward architecture (left) with the addition of feedback (center), as in TRACE, or sublexical decision nodes (right), as in
Merge (Norris et al., 2000). Either feedback connections or decision nodes are required to account for lexical effects on sublexical decisions. The decision-node architecture requires
more additional nodes and connections than feedback (dashed lines).
Source: Reproduced from Magnuson (2022b).
Fig. 2. Interactive activation example. Arrows denote excitatory connections (7 input
phonemes feed forward to 3 words, which send feedback to constituent phonemes).
Edges with bulb connectors indicate lateral inhibition links within layers.
Source: Reproduced from Magnuson (2022a).

i. Claim: Feedback cannot distinguish signal from noise, so feedback
can only ‘reinforce the status quo’ (Norris & Cutler, 2021, pp. 3–
4). Therefore, the claim is that the system can do no better than
to select the word with best fit to the bottom-up input (Norris
et al., 2000, p. 301), and it would be impossible for feedback
to improve upon this, because feedback can only mirror input
(whether signal or noise).

ii. Claim: Feedback in TRACE does not promote faster word recogni-
tion. In TRACE simulations comparing recognition times for 21
specially-selected words with feedback on or off (Frauenfelder
& Peters, 1998), as many words were recognized more quickly
without feedback as were recognized more quickly with feed-
back (cited as critical support by Norris et al., 2000, p. 302, p.
324).

iii. Claim: Feedback does not promote faster or more accurate word
recognition in noise. Norris and Cutler (2021) (mistakenly) claim
simulations in Magnuson et al. (2018) only appear to show
feedback advantages but are due to a ‘‘workaround’’ of posthoc
application of the Luce Choice Rule to activations, rather than
direct addition of noise to model inputs.

First, consider claim (i), feedback cannot distinguish signal from noise.
The assumption that feedback cannot selectively reinforce signal over
noise neglects lateral inhibition. Consider Fig. 2. If the input is /tEl/,
TELL would be most activated by the bottom-up signal, CAT and LOAD
would be partially activated by the signal, and all three would receive
additional activation if noise were added.

Without lateral inhibition, feedback must simply mirror the bottom-
up combination of signal plus noise. However, so long as TELL has
greater bottom-up support than other words, when it becomes even
slightly more activated than other words, it begins to inhibit CAT and
LOAD, reducing the feedback those nodes send to their constituent
phonemes. The subsequently enhanced feedback from TELL promotes
greater activation of /t/, /E/, and /l/, shifting the balance of signal
and noise already, and lateral inhibition between phonemes further
increases that advantage. As excitatory activation iteratively resonates
3

vertically (words ↔ phonemes) and inhibition flows laterally within
each layer, the signal will be sharpened (Fig. 3). When inputs are noisy,
signal is promoted and activation due to noise is inhibited due to
iterative refinement. Typically, this will drive faster target activation
and, under noise, better accuracy (as demonstrated via simulations by
Magnuson et al., 2018, who observed advantages in proportion correct
of ∼0.05 to ∼0.2 at various levels of noise, as well as robust 5%–10%
advantages in response times for correctly recognized items; see their
Figure 3, as well as Figs. A.1 and A.2).

Next, consider claim (ii): feedback does not promote faster word
recognition. In TRACE simulations with only 21 words, as many words
were recognized more quickly without feedback as were recognized
more quickly with feedback (Frauenfelder & Peters, 1998). However,
that result is superseded by Magnuson et al. (2018)’s simulations with
hundreds of words. Magnuson et al. found that, even without noise,
57% of words from the original ∼200-word TRACE lexicon were recog-
nized more quickly with feedback and 27% were slower (the rest did
not change). With a ∼900-word lexicon, without noise, 38% were rec-
ognized more quickly with feedback, while 36% were recognized more
slowly. However, for both lexicons, progressively stronger feedback
advantages emerged (in both speed and accuracy) as noise increased
(with substantial noise, ∼60%–80% were recognized more quickly with
feedback, and accuracy was substantially higher with feedback than
without at even moderate levels of noise).

Finally, claim (iii) is that feedback advantages are artifactual (Norris
& Cutler, 2021, p. 3):

...Can recognition of a degraded signal be improved by the kind of
activation feedback incorporated in TRACE? The answer is again
no ... The degraded-speech case still regularly causes confusion
(e.g., Magnuson et al., 2018), and may have its origin in the original
version of TRACE, which ruled out noise both in the input and
during processing ... (The effect of noise was simulated by adding
a constant amount of noise to a decision process – the Luce choice
rule – operating on the output of the network.) In such a system,
where feedback and noise are operating at different levels, feedback
(as part of processing) can alter the relative activation of a word
and its competitors but at the same time have no effect at all on
any noise (which operates separately on final outputs) ... because
of a workaround in the model, simulations using TRACE can give
the impression that feedback can improve performance. ... In a
real system with degraded input, signal and noise are in the same
processed channel, and feeding activation back to the phoneme level
will boost both the signal and the noise equally. Feedback can here
do nothing to improve the signal to noise ratio.

Norris and Cutler (2021) mistakenly claim (Magnuson et al., 2018)
simulated noise by ‘‘adding a constant amount of noise to a decision
process – the Luce choice rule – operating on the output of the net-
work’’. This is incorrect. Magnuson et al. did apply the choice rule
to activations to generate predicted response probabilities (standard in
many previous simulations; e.g., Frauenfelder & Peters, 1998; McClel-
land & Elman, 1986), but this had nothing to do with noise. The noise
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Fig. 3. A schematic of iterative refinement (or signal sharpening, cf. Blank & Davis,
2016) in interactive activation. (A) Given input consistent with ‘tell’, TELL becomes
strongly activated while CAT and LOAD become partially activated. (B) TELL inhibits
CAT and LOAD. (C) Words send feedback to constituent phonemes, with lateral inhi-
bition at the phoneme level enhancing the advantage for phonemes that are relatively
strongly activated. (D) Over subsequent cycles of excitatory and inhibitory activation
flow, the activations for TELL and its phonemes are iteratively enhanced/sharpened.
Note that if random noise were added to the inputs, the same refinement/sharpening
would happen so long as the target word has at least slightly higher activation than
other words. The most important connections are highlighted in red in each panel,
with darker red indicating greater activation. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Source: Reproduced from Magnuson (2023).

procedure was specified in a subsection labeled ‘Noise’ (Magnuson
et al., 2018, pp. 3–4); noise was added before response probabilities
were calculated:

Gaussian noise was sampled from a normal distribution function and
added independently to each element of the input stimulus vector
for each time step (cf. McClelland, 1991).

Since noise was added to inputs, noise propagated forward and
backward through the system, and thus signal and noise were in the
‘‘same processed channel’’. The Luce Choice Rule rescales values (am-
plifying larger values and squashing smaller values). Thus, it could
4

amplify differences present in raw activations, but it could not generate
differences that were not already there. To assuage potential concerns,
we present a replication of Magnuson et al.’s feedback advantages using
raw activations (i.e., with no use of the Luce Choice Rule) in the
Appendix.2

The case against feedback is not supported. In summary, autonomous
models are not simpler (see Magnuson et al., 2018, for a technical
case that the feedforward alternative is more complex); there is no
evidence that feedback necessarily hinders perception (and there are many
demonstration proofs that feedback and feedforward gains can be
balanced to provide benefits of feedback while maintaining bottom-up
priority); feedback is necessary to account for (a) robust effects (Luthra
et al., 2021) that autonomy proponents agree provide a gold-standard
test for feedback (McQueen et al., 2009; Norris et al., 2016; Pitt &
McQueen, 1998) and (b) recent evidence for early lexical modulation
of low-level ERP responses to speech (e.g., Getz & Toscano, 2019;
Noe & Fischer-Baum, 2020). Crucially (Magnuson et al., 2018) have
demonstrated (and we have replicated in the Appendix) feedback’s
useful purpose (in concert with lateral inhibition): making the sys-
tem robust against noise. Other potential feedback benefits include
predicting/anticipating inputs (Bar, 2003), attentional control, and
stabilization (Bonte, Parviainen, Hytönen, & Salmelin, 2005).

4. Parsimony

Given two explanations, so long as both account for relevant data,
Occam counsels us to prefer the simpler one. Proponents of autonomous
models assert that SWR models without feedback are ‘‘incontrovertibly
simpler’’ (Norris et al., 2016), but have not provided a formal basis
for this assertion (Magnuson et al., 2018). Indeed, autonomous models
add a special-purpose ‘‘decision’’ pathway outside normal perception to
account for lexical effects on sublexical tasks that is at least as complex
as a feedback pathway (Norris & McQueen, 2008; Norris et al., 2000),
and arguably more complex (Magnuson et al., 2018).

Autonomous models are increasingly incompatible with relevant
data. As discussed, autonomous models cannot explain LCfC (recently
demonstrated to be robust when items are rigorously pretested Luthra
et al., 2021) or recent ERP evidence for rapid lexical impact on low-
level responses to speech (Getz & Toscano, 2019; Noe & Fischer-Baum,
2020). Other examples in speech and SWR appear to require feed-
back (e.g.: Blank & Davis, 2016; Bonte et al., 2005; Cope et al., 2017;
Samuel, 1997; Sohoglu & Davis, 2020; Sohoglu, Peelle, Carlyon, &
Davis, 2012). Furthermore, there is pervasive evidence for feedback
in vision (e.g.: Bar et al., 2006; Delorme, Rousselet, Macé, & Fabre-
Thorpe, 2004; Hupé et al., 1998; McMains & Kastner, 2011; Mechelli,
2004; Zanto, Rubens, Bollinger, & Gazzaley, 2010; Zanto, Rubens,
Thangavel, & Gazzaley, 2011; Zhang et al., 2014) and audition (e.g.:
Alain, Arnott, & Picton, 2001; Bendixen, SanMiguel, & Schröger, 2012;
Davis & Johnsrude, 2007; Elhilali, Xiang, Shamma, & Simon, 2009;
Kazimierczak et al., 2022; Strait, Kraus, Parbery-Clark, & Ashley, 2010;
Sussman, Winkler, Huotilainen, Ritter, & Näätänen, 2002).

On balance, the principle of parsimony favors feedback. For exten-
sive theoretical discussions that extend beyond the domain of SWR,
see Bar (2003), Clark (2013), Gilbert and Li (2013), Lupyan (2015),
and Spivey (2023).

2 McClelland (1991) and Movellan and McClelland (2001) acknowledge
that Massaro (1989) was correct that TRACE activations converted to response
probabilities via the Luce choice rule violate logistic additivity, but they also
demonstrate that adding noise to TRACE inputs and/or activations instead
is preferable because the resulting activations do not violate principles of
Bayesian inference; thus, in many cases, modelers should add noise to TRACE
(or similar interactive activation models) rather than applying the Luce choice
rule. However, to be clear, Magnuson et al. (2018) only applied the Luce
choice rule after applying noise to inputs.
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5. Discussion

The case that autonomous models should be preferred to feedback
does not hold. Behavioral (e.g., Luthra et al., 2021) and neural (e.g.,
Getz & Toscano, 2019; Noe & Fischer-Baum, 2020) empirical results
support sublexical impact of lexical knowledge in ways models with-
out feedback (Norris & McQueen, 2008; Norris et al., 2000) cannot
accommodate, and simulations (Magnuson et al., 2018) demonstrate
how feedback in concert with lateral inhibition in interactive activation
sharpens signals relative to noise (see the Appendix for a replication
using raw TRACE activations).

Proponents of interactive and autonomous theories appear, in recent
publications, to have different goals. Norris and Cutler (2021) claim
that SWR systems cannot make better choices than to select the word
with best initial bottom-up match to input. To take this literally would
be inconsistent with Bayes’ theorem, which is why Shortlist B takes into
account both prior probability and word likelihoods when evaluating
bottom-up input.

If one is primarily concerned with ‘computational adequacy’
(achieving the best possible performance; McClelland & Elman, 1986),
one could stop at choosing the best item with respect to priors and
likelihoods. However, we are interested in ‘psychological adequacy’
(McClelland & Elman): how humans recognize spoken words, with the
aim of developing theories that span behavior, cognition, development,
and neurobiology (cf. Magnuson et al., 2020). On this view, the criteria
for model comparisons goes beyond how to most simply achieve
highest performance, with the aim of providing an explanation most
compatible with human behavior and neurobiology; with the goal of
advancing theories towards comprehensive accounts of the cognitive
and neural bases for human performance. This view also endorses a
search for algorithms that approach optimality via satisficing (Simon,
1956) algorithms that reduce computational complexity (Gigerenzer
& Goldstein, 1991), and may better reflect mechanisms underlying
human SWR, which must operate over an ambiguous signal via limited
cognitive resources under severe time pressure (cf. McClelland et al.,
2014, who explicitly frame their interactive activation hypothesis as the
basis for humans to approximate optimality under the constraints of
real-time processing and partial information).

Through this lens, feedback provides two interesting steps beyond
an initial rational analysis/ideal observer model. First, while Shortlist
B is endowed with lexical knowledge (priors and likelihoods) and the
luxury of conditioning interpretation of bottom-up inputs on lexical
knowledge (without considering algorithmic or neural constraints),
feedback in interactive activation instantiates an implicit generative
model that embodies approximate word likelihoods given input pat-
terns (since words feed back to their constituent phonemes), without
the need to store a lookup table of likelihoods.3 While the TRACE ar-
chitecture is not fully neurally plausible, its ‘‘neurally inspired’’ nature
reduces the distance towards developing more realistic models.

Second, feedback in concert with lateral inhibition provides ‘sig-
nal sharpening’ (cf. Blank & Davis, 2016) via a process of iterative
refinement, schematized in Fig. 3. Small bottom-up advantages are am-
plified by successive cycles of lateral resonance (inhibition) and vertical
resonance (feedforward-feedback). As inputs become noisier, response
times in our simulations become longer, as it takes more iterations for
signals to sharpen sufficiently to meet the decision threshold (and as in-
puts become noisier, there is a greater chance of misses [targets failing
to reach threshold] or false alarms [non-targets exceeding threshold]).

If iterative refinement ideally settles on the word with the best
bottom-up fit, how does it yield better results than a system that

3 Of course, one could respond that, e.g., frequency is ‘given’ in TRACE as a
ookup table. However, phoneme → word weights proportional to frequency are

consistent with general learning principles (Dahan, Magnuson, & Tanenhaus,
2001).
5

would just choose the word with best bottom-up fit immediately (cf.
Norris et al., 2000)? This follows from having a decision policy (see
Appendix). Norris (2006) points out that when inputs are ambiguous,
trade-offs of time constraints and error costs may modify ideal decision
policies. Decision policies (which may involve an absolute threshold,
or the relative activation of the most active item to the next-most
active item; cf. Hannagan, Magnuson, & Grainger, 2013) can implicitly
represent confidence: e.g., more confidence is warranted when the top
lexical candidate is marginally more likely than many words with low
likelihoods vs. one where the target has the same likelihood but is
marginally more likely than a single item (while other items have much
lower likelihoods). Indeed, in the former case, iterative refinement via
interaction will boost the target more strongly.

With the goal of psychological adequacy, it is productive to consider
how models like Shortlist B and TRACE complement one another.
Shortlist provides a baseline as an approximate ideal observer model.
Shortlist does not (yet) address how such a model could be imple-
mented in a biologically-plausible way, nor how such a system could
develop. Shifting from a debate mode to the aim of seeking synergy
between autonomous and interactive approaches, we might focus on
understanding how human performance and/or neurobiology differ
from the ideal observer baseline (which would require developing
falsifiable hypotheses from Shortlist), whether models like TRACE differ
from the ideal observer baseline in human-like ways (which would be
facilitated by developing new falsifiable hypotheses from TRACE), or
developing information processing theories at all three of Marr’s levels,
and comparing theories that start either from assumptions of autonomy
or interaction. This might lead us to discover ways to improve or merge
the approaches, which would be a welcome shift from the current focus
on debate.

While it is important to correct errors and misunderstandings (our
motivation for writing this response), the feedback debate must be
resolved through empirical studies, model comparisons, and working
towards theories that integrate Marr’s three levels. This will serve
what we assume is a shared goal with our respected opponents in this
debate: explaining the cognitive, perceptual, and neurobiological bases
of human language processing.

Data availability

Code for supplement available from the first author; the repository
will be made publicly available when the jsTRACE model is released.

Appendix. Simulation: Feedback and activations under noise

A.1. Procedure

In this simulation, we use the same approach as Magnuson et al.
(2018) to compare word recognition accuracy and recognition time in
TRACE — with the important alteration that we use raw activations
rather than response probabilities.

We conducted simulations using jsTRACE, a recent reimplementa-
tion of TRACE in JavaScript (Magnuson & Curtice, 2023). jsTRACE
performs identically to jTRACE but updates near-obsolete aspects of
the Java implementation and provides the ability to do batch scripting
via external JavaScript code. We used the default slex TRACE lexicon,
consisting of 212 words (as well as the ‘‘silence’’ word used to represent
a state of no input; the silence word was not included in analyses). We
used three levels of feedback (0.00, 0.015, and 0.03, the latter being the
default level with small lexicons in TRACE). We combined each level
of feedback with seven levels of Gaussian noise (with mean of zero and
standard deviation ranging from 0.0 to 1.5 in steps of 0.25). A value
sampled from the distribution was added independently to each cell of
the input matrix prior to the simulation. To ensure that results under

noise were robust, we conducted 10 simulations of every word in the
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Fig. A.1. Results of Simulation 1. Replication of Magnuson et al. (2018) using activations instead of response probabilities. Each point represents the outcome of simulating every
word in the 212-word slex lexicon, with 10 simulations conducted with each word at each noise level greater than zero. The recognition threshold was set to 0.4, which maximized
accuracy with feedback and noise set to zero.

Fig. A.2. Comparing activation-based recognition time with feedback (set to 0.03) and without feedback (0.0) in Simulation 1. At each noise level greater than 0, there were
2120 simulations (10 repetitions of each word with Gaussian noise added to the input). Results are plotted only for words that were correctly recognized both with and without
feedback. Items classified as ‘‘faster’’ were recognized more quickly (reached the threshold) more quickly with feedback than without; ‘‘equal’’ reached threshold at the same cycle
with and without feedback; ‘‘slower’’ were reached the threshold later with feedback than without.
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lexicon at all levels of noise greater than zero. We allowed simulations
to run for 100 time steps (cycles) in TRACE.

Decision policy. To assess how quickly a model ‘‘identifies’’ a word,
we need a decision policy. We cannot simply take the maximum
value, as a target’s activation may continue increasing throughout an
entire simulation. We use a simple threshold-based policy, where a
correct identification is defined as the target reaching or exceeding that
threshold and no other item reaching it. Recognition time is the cycle
where the target’s activation first reaches or exceeds the threshold. We
first identified the activation threshold that would maximize accuracy
for zero feedback without noise; this was 0.4. We then applied that
threshold to every simulation (that is, at every level of feedback and
noise). Note that any potential bias in this policy favors simulations
without feedback, since the threshold optimizes accuracy with zero
noise and zero feedback.

Crucially, all analyses were applied to raw activations. We did not
transform activations to response probabilities.

A.2. Results

In Fig. A.1, we see a clear replication of the results of Magnuson
et al. (2018) based on raw activations. Recognition time is faster with
feedback than without at every level of noise — with the exception
of 𝑠𝑑 = 1.50, where only 3 correct trials (out of 2120 trials) occurred
with feedback set to 0.0 (compared to 37 correct trials with feedback
at 0.015 and 169 correct trials with feedback at 0.03), rendering this
point uninterpretable. Feedback allows higher accuracy once noise is
added.

In Fig. A.2, we plot recognition times for words that were correctly
recognized with feedback at the default value of 0.03 and without
feedback (set to 0.0) at each noise level. Again, we repeated the
simulation of each word 10 times at each level of noise greater than
zero. A clear, consistent advantage is observed for the majority of words
at each level of noise.

A.3. Conclusions

Contra assertions by Norris and Cutler (2021), feedback promotes
more robust word recognition performance, and the results reported
by Magnuson et al. (2018) were not an artifact of using response
probabilities rather than raw activations.
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