Using frequency selectivity to examine category-informative dimension-selective attention

Introduction

Auditory categorization, including speech categorization, may rely on selective attention to diagnostic acoustic dimensions, like frequency¹

To test whether selective attention underlies auditory categorization, we examine cortical activation when categorization depends on diagnostic information conveyed in particular frequency bands

Previous work shows strong resemblance between stimulus-driven tonotopic maps of auditory cortex and **attention-driven tonotopic maps** (when listeners are explicitly directed to attend high / low frequencies)² Sahil Luthra¹, Raha Razin², Chisom O. Obasih¹, Adam T. Tierney³, Frederic Dick² & Lori L. Holt⁴ ¹Carnegie Mellon University ²University College London ³Birkbeck, University of London ⁴The University of Texas at Austin

Selective attention to diagnostic dimensions, as indexed by recruitment of frequency-selective auditory cortex, may support auditory categorization

Tonotopy: Frequency-selective organization in auditory cortex

175 Hz

5286 Hz

- We train listeners to categorize four novel non-speech auditory categories defined in a multidimensional space that includes patterns in high/low frequency bands
- We compare concordance of tonotopic and attention-driven tonotopic maps with activation driven by categorization tasks that solicit analysis of patterns in high vs. low frequency bands

Methods

- Dual frequency-band stimuli where each band (high/low) consists of 3 sequential nonspeech hums (derived from Mandarin tone contours)³
- For <u>A vs B</u>, listeners must discover variable hum patterns in <u>high</u> frequencies; for <u>C vs D</u>, listeners must discover patterns present in <u>low</u>

A. Representative Hum Exemplars

B. Category Composition

High-Band Diagnostic			Low-Band Diagnostic		
C	ategory			÷1	

Different frequency bands were presented with consistent phase lag during each run, following previous work⁴. The phase lag with maximal BOLD response (i.e., frequency range) was averaged across participants and masked anatomically.

Cross-task concordance: Listeners recruit tonotopic regions in auditory cortex during frequency-selective auditory categorization

Concordance of auditory categorization and tonotopy

frequencies

 5 days training w/ feedback to learn the "alien" associated with each category; had to reach at least 75% (2AFC) for all categories to qualify for fMRI session

- 95 adult listeners (age 18-40; fluent in English, no experience with tonal languages) completed training, of whom 54 reached criterion-level behavior for fMRI session. After excluding 5 for non-compliance, final N = 49. (Results reflect only these participants.) In an fMRI session, each listener completed three tasks in this order:
- 1. Tonotopy. Listeners heard ascending/descending pure tone sequences and performed a one-back repetition task. This yields a stimulus-driven tonotopic map.
- 2. Alien 2AFC categorization. Listeners categorized aliens, with trials blocked by diagnostic band frequency. In a control task, listeners made judgments about "alien size" (big/small aliens differentiated by stimulus amplitude).
- **3.** Attention-o-tonotopy. Listeners simultaneously heard high-frequency and low-frequency tone sequences and were explicitly directed to attend to high tones / low tones / amplitude (control task). This yields an attention-driven tonotopic map.

Behavior: Listeners learned novel nonspeech categories defined by complex patterns situated in high versus low frequency bands

Categorization improved over five days of training In-

In-scanner categorization accuracy was near ceiling

Concordance of auditory categorization and attention-o-tonotopy

Summary and Future Directions

Categorization may drive selective attention to category-diagnostic dimensions

- Listeners were accurate in labeling novel nonspeech categories defined by complex patterns situated in high versus low frequency bands.
- Cortical activation during categorization was modulated by (1) whether the category-diagnostic information was in the high or low frequency band (2) the tonotopic organization of auditory cortex
- Concordance maps indicate that activation during the auditory categorization task is predicted by tonotopic organization of auditory cortex and recapitulates explicit

Behavioral performance on final training (2AFC) block

Confusion matrices for test blocks (4AFC, no feedback)

In-scanner accuracy was high for both tonotopy and attention-o-tonotopy tasks

"attention-o-tonotopic" maps

Ongoing analyses will leverage control tasks (loudness judgments) to test if selective attention also involves suppression of non-diagnostic frequency bands⁴

References

- ¹Francis, A. L., & Nusbaum, H. C. (2002). Selective attention and the acquisition of new phonetic categories. *Journal of Experimental Psychology: Human Perception and Performance, 28*(2), 349-366.
- ² Dick, F. K., Lehet, M. I., Callaghan, M. F., Keller, T. A., Sereno, M. I., & Holt, L. L. (2017). Extensive tonotopic mapping across auditory cortex is recapitulated by spectrally directed attention and systematically related to cortical myeloarchitecture. *Journal of Neuroscience*, *37*(50), 12187-12201.
- ³Obasih, C. O., Luthra, S., Dick, F., & Holt, L. L. (2023). Auditory category learning is robust across training regimes. *Cognition*, 237, 105467.
- ⁴ Paltoglou, A. E., Sumner, C. J., & Hall, D. A. (2009). Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention. *Hearing Research*, *257*(1–2), 106–118.

Acknowledgements

This work was supported by a grant from the NSF (BCS1950054 to LLH and FD), by an NIH R01 grant (DC017734 to LLH and FD), and by a

development fund award (to LLH) from the CMU-Pitt Brain Imaging Data Generation & Education (BRIDGE) Center. SL was supported by NIH F32 DC020625. COO was supported by an NSF GRF (DGE 1745016, DGE 2140739), NIH institutional training grant (T32 GM0081760), and a diversity supplement to DC017734. Christi Gomez and Erin Smith provided essential support in conducting the research. The poster design was adapted from a template by Hannah Mechtenberg.

