Lexical information guides retuning of neural patterns in perceptual learning of speech Sahil Luthra¹, João M. Correia², Dave F. Kleinschmidt³, Laura Mesite⁴, & Emily B. Myers¹

¹ University of Connecticut; ² Basque Center on Cognition, Brain and Language; ³ Rutgers University; ⁴ Harvard Graduate School of Education

Introduction

Interpretation of ambiguous phonemes is influenced by context (e.g., lexical knowledge, accompanying text). Such context also guides perception in future encounters, a phenomenon known as phonetic recalibration or perceptual learning for speech.^{1,3,6,7}

Myers and Mesite (2014) investigated the neural basis of lexically guided perceptual learning.⁶ Right frontal brain regions showed differential responses to ambiguous tokens as a function of previous exposure.

Region that showed lexical context effects on subsequent processing of speech

How does the underlying pattern of neural activity change when phonetic recalibration occurs?

Neuroimaging Methods

Archival fMRI data⁶ came from **24** subjects who completed alternate blocks of lexical decision and phonetic categorization. During lexical decision, participants either heard ambiguous tokens in s-biased contexts (e.g., *epi?ode*; n=12) or sh-biased contexts (e.g., *refre?ing*; n=12).

Study used a fast event-related design with sparse sampling (stimuli presented in 1-sec silent gap after each 2-sec scan).

References

¹Bonte, M., Correia, J. M., Keetels, M., Vroomen, J., & Formisano, E. (2017). Reading-induced shifts of perceptual speech representations in auditory cortex. Scientific Reports, 7(1), 5143. ²Gow Jr, D. W., Segawa, J. A., Ahlfors, S. P., & Lin, F. H. (2008). Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates. Neuroimage, 43(3), 614-623. ³Kleinschmidt, D. F., & Jaeger, T. F. (2015). Robust speech perception: recognize the familiar, generalize to

the similar, and adapt to the novel. Psychological Review, 122(2), 148-203.

Analysis Approach

Multi-voxel pattern analysis (MVPA) considered the pattern of beta weights⁵ across all voxels on each phonetic categorization trial.

Trial	Acoustics	Percept	Hypot
1	20% s	S	
2	40% s	S	
3	50% s	S	
4	40% s	SH	
5	50% s	SH	
6	70% s	SH	

Note that categorization of ambiguous tokens was influenced by the contexts in which listeners had previously encountered such stimuli, though there was still **considerable variability** in their categorization from trial to trial.

and **tested** on patterns from **ambiguous** trials, which were either labeled based on physical acoustics or based on trial-by-trial behavioral percepts.

Initial analyses considered all voxels in a set of anatomical regions of interest (ROIs) known to be involved in language processing. Follow-up analyses considered each ROI separately. Right hemisphere analogs were considered but are not shown.

Cross-validation was achieved with a leave-one-run-out approach. Recursive feature elimination was used to identify the most informative voxels. To estimate chance levels, we also conducted 100 permutations in which training labels were shuffled.

⁴Leonard, M. K., Baud, M. O., Sjerps, M. J., & Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, 13619.

⁵Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. Neuroimage, 59(3), 2636-2643. ⁶Myers, E. B., & Mesite, L. M. (2014). Neural systems underlying perceptual adjustment to non-standard

speech tokens. Journal of Memory and Language, 76, 80-93. ⁷Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. *Cognitive Psychology*, 47(2), 204-238.

Classification was significantly above chance when tested on behavioral percepts (p = 0.012) but not when tested on physical acoustics (p = 0.998).

Follow-up analyses of percept classification considered smaller ROIs.

Brain activity (especially in left parietal regions) reflects listeners' ultimate perception of ambiguous speech sounds, not necessarily the actual acoustics.

- the pattern of activity in **left superior temporal gyrus (STG).**¹
- STG differed depending on how a noisy stimulus was perceived.⁴
- the activity of left parietal regions in their ROIs.
- specifically tied to lexical influences on phonetic processing².

Acknowledgements

This work was supported by NSF IGERT DGE-1144399 (PI: Magnuson), NIH R03 DC009395 (PI: Myers), NIH R01 DC013064 (PI: Myers) and an NSF Graduate Research Fellowship to SL.

• A previous phonetic recalibration study used text to guide interpretation of ambiguous speech sounds in nonword contexts and found that listeners' interpretation of the ambiguous sound was recoverable from

• In a phoneme restoration study, trial-by-trial neural responses in left

• Notably, these previous results emerged in analyses that did not consider

• Our data suggest a role for *left parietal* regions in phonetic recalibration. These regions may be particularly important when lexical knowledge guides recalibration, as left parietal activity has been

